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Shifman, valnshtefn, and Zakharov {SVZ) suggested several years ago [1]
that one could use the dispersion relations for two—point functions in QCD in

combination with first—-order perturbation theory and the operator product ex-

THE 5¥Z METHOD: WHY 1T WORKS AND WHY IT FAILS
pansion to relate the masses of quark-antiquark bound states to fundamental

Bernice Durand and James B. Whitentonk parameters in the field theory. The SVZ procedure (to be sketched below) has
University of Wisconsin-Madiscon, Physics Deparcment, Madison, WI 53706 been used to correlate the masses and spin splittings of a large number of

meson [l-4] and baryon [5] states, and to determine the values of such QCD
and i

parameters as the gluon condensate parametér <0|G:uﬂu |0>,thought to play a

a
L. Durand
crucial role io quark confinement. The fits to hadronic masses have been
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and remarkably successful. When the SVZ method is applied, for example, to

University of Wisconsin-Madison, Physics Department, Madison, WI 537061 charmonium, with the gluon condensate parameter adjusted to fit the J/Y mass,

the predictions for the lSO and 3PD 1,2 masses agree with the observed masses
’ »

to within 10-30 MeV [3,4].
The striking phenomenological success of the SVZ method has been rather

puzzling. The method requires that there be a common region of wvalidiry of

2
ABSTRACT the operator product expansion {valid for large Q or short Euclidean times)

and of a resonance approximation for the dispersion integral (valid for

We show in the context of potential theory first, why the SVZ procedure 2
small Q@ or long Euclidean times). It is not evident that such a region
for calculating hadronic masses succeeds phenomenologlically: [t provides a

exists. In Eact, Bell and Bertlmann [6,7] showed that the SVZ method failed
semiclassical iaterpolating formula which correctly relates input masses to

to glve accurate ground state energles when appllied to realistic potentlal
autput masses; and second, why it fails theoretically: the potentfial (or QCD) _

models for heavy qq systems. Alternately, it falled te reproduce the input
parareters derived from flts to masses are necessarily different from the

potentlal because the potential parameters had to be adjusted to bring the
true parameters.

SVZ prediction into agreemeat with the known ground state energy. In particular,

the potential-theory analog of the gluon condensate parameter was underestimated



by a factor J 2 by this fitting procedure [7]. Essentially the same results M(g) = _IJ;I ds ¢ %% In T(s) . %)

were later found by Bradley ec al. [8] and Ditsas and Shaw {?] in the large-

For o sufficiently large, only the lowest-mass scates in eq. (3)
llc limit of two-dimensional QCD: the S5VZ method again badly underescimated

{assumed to be discrete) contribute to the integral, and one £inds that

o’

M)~ ]y e ©+ continuum contributions. )
n

the (known) coodensate parameter. However, the method succeeded phenomenolog-
fcally: Ditsas and Shaw [9] could fit the ground state spectra for different
spio-parity states in the two-dimensional "charmonium™ and "upsiloniun™ systems

It is clear, in particular, that the ratio funcrion
simultaneously using the adjusted parameters.

In chis paper, we Investigate the theory behind the "exponential moment" R(g) = - %Ef to M{g) = - M'{a)/M{a) (6)
version of the SVZ method [1,4,10] using nonrelativistic potential models for

2
q Yy ‘hea M. from above for o + = .
the qq system. We show why the method succeeds In Eitking hadronic energles, approache 1

To make use of eq. (6), SVI observe that for ¢ sufficiently small
and why it fails in predicting energies or determining (QCD} parameters.

(Q2 large), one can evaluate M(c) and R{o) directly by using QCD perturbation
operator product expaunsion in eq. (2}, and then applying the
2. The SVZ method theory and the op p

Borel transform. The result is an expression [3,4]
The 5YZ wmethod is based on the differentiaced dispersion relation or spectral

representation satisfied by the current-current Greem functien in QCD, RQCD(G) = A{g) + usB(c) + us<a> Ca(o) + ... N
l_" (- _d‘)N ﬁ(‘QZ) -3 ds In M) {1} in which A(g) is the value of R for noninteracting quarks, B is the lowest
N. 2 m .
dq 2, N+l
(4 order perturbative correction, andC, is the leading nonperturbative correction
Here ﬂ(qz) is the “polarization function" defined schematically by with condensate parameter <a>. By assuning, ffnally, that there is a reglon

of O in which both the large-0 and small-O apptoximations are valld, and

ig*"x 2
! Idx i <0iT (J---(x)' J. ..(0)|0> = (teasor structure)x (g}, (2} requiring that the results be consistent, i.e., that RQCD be approximately

wvhere J is a tensor current with a nonzero projection om the states |c1> constant, dRqCD/dG = 0, SVZ obtain a relation for the hadronlc mass in
o 2z
of interest and terms of the QCD parameters, Hl = min RQCD(U). This relation has been used
a
ith knouvn hadronic masses to determine the condensate parameters in eq. (7
laits) = 1] |<0l3  (0)]e>]? s(s) . (3) v

° {(quantities of interest in themselves), and to predict other hadronic masses

By applying a iimiting procedure (che "Borel transforn™) om eq. (1), SVZ in terms of those parameters with the striking results noted above.

obtain the "exponential moment” formula [l.llil]l



3. The SVZ method for potential theory

In order to study the SVZ procedure in a well-understood asituvation, we
have applied it to confining potential models for the qa system. While our
results are therefore most directly relevant for heavy quark systems for which
potential models are highly successful, we believe our conclusions have more
general valldity as suggested, 2.g., by the work of Ditsas and Shaw [9].

In a nonrelativistic potential model, the currents J_.. in eq. (2}
become tensor currents Jg. « ‘Ilu(V),2 and the Green functlon [ 1s propor-

tional to aR(O,O,E) where [11]

%l(r',r.ﬁ) = lim 1 I gt eixt Gl(r'.r.t) (8)

', r+0 (r'r)L
with

= -iE

t
Gl(r'.r.t) = i8(c) nzl Rnl(r‘) e nk

*
anl(r) . (9}

Here Rnl(r) 15 the radial wave function for the nth state with angular momentum

A
i and Eni is the nonrelativistic energy. G1 satisfies a dispersion relation

which follows from eqs. (8) and (9},

o ~
InG, (0,0,E')
R

8,0,0,-8) = 7 . (10)
o E' + E

with

“ 1
Im GE(O'D'E') =1 lim

T I (11)
r',re0 (r'r)

-] , "
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o=l
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Applying the inverse laplace transform (or Borel transforml)

L_1(°)(1) - 2#1 I dE eET(') to eq. (10) and using eq. {11}, we obtain the
- im

poteatial-theory analog of eq. (4),

6
My (1) = -11; Jodn L™ El(o,o.s)
© _ (12)
= lim L TR (r') e Enltn. ()
afl Y

rir0 (r'r)r‘ n=1

The series in eq. (12) is just an angular projection of the exact Euclidean
or imaginary-time propagatoer for the qa system,

ME(I) = lim 1

~ -+ - ~
—E— | 4. dfL.,Y, (') R{c',r,~11) ¥, (r} (13)
', 0 (r'r)z I T r'im Lo

where

KGET, L, -11) = <E'|e ¥ D> (14)

We now follow the $VZ argument. It is clesr from eq. (12} that the ratio
function R£(1) = - %; in ML(T) approaches Ell from above for T + = . To cal-
culate HE(T) directly, we note that the ponrelativistic analog cf the Borel-
cransformed operator product expansion is the ghorc (Euclidean) time pertur-
bation expansien [11,13]. The calculation is easily performed ro first order
in the {confining) qa potential V(r) by iterating the standard integral
equation for K(;'.;,—iT) and vsing the angular projection in eq. {13}.

We find thac Rl(1) is given for 1 sufficiently small by [11]

3
+ —
RV () - —2 ¢ fodz H, (2) v((:z/mq)l’z) (15)
where
w L ORIT(Rk- 2) _
My () = 3 L et (16)
T+ 3) g K (R-KIT (= 3]

Our best first-order estimate for the energy Ell 1s then obtained by minimizing

P,
Ei:.) - min[kgl){‘[)] . an



As we now show, this procedure has a remarkable hidden structure which
makes It reasomably successful despite the inherent incoansistency of using a
shorc-time approximation for Rl to caleculate the ground state energy, which is

a long-time property of the system.

4. The structure of the SVZ approximatlion

It is simple to show that the 5VZ calculatfon of the S-state energy

ElS gives a varlational upper bound on thils quantity. The Rayleigh-Ritz

variational principle states that

3% 1 2
zlsgfdr@[—;;v +V1 ¢ as)

for any normalired trial wave Function $(r). For L=0, the expression for

Ril) in eq. {15) can be written as

2
o -m r /T
Rél)- %; + ;—35 [ d3r re 3 v(r). {19
T

The integral gives the expectation value of V¥ for the normalized trial wave

function
2
VI

ml r
TG e . (20)

olr) =
where T is now jdentifled as the variational parameter. After calculating

the expectation value of the kinerlc encrgy for this wave function, and

using eq. (IR), we find that for any T > O [11,13]

1 < R(l)(T

(1, - L
Ejg < Ry (1) = 37 < Ry (X) . (21)

L5
o (1) (1)
Hence E < min [R {(t)] = E , and the SVZ estimate for the energy is
1s 1 0 18

alwavs higher than the true energy. (A less general version of this result

restricted to a special class of power-law potentlals was recently proved by

Bertlmann [14].)
This result has two important implications. First, it explains why Lhe

SVZ procedure succeeds in giving reasonably accurate §-state energies [6,11]

1
even though the values of T which minimize Ri )

(1)

that Rc is a poor approximation to Ro: T i{s used only as a varlational

are typically large encugh

parameter in eq. (17). 1Its size 1s irrelevant. The accuracy of the approx-
imation is determined and limited by the (hidden) chotce of trial wave func-

tion. Second, it explains the empirical observation of Bell and Bertlmann

(1)
13

rigorously that the potential energy must be adjusted downward (e.g., by

{6,7] that the SVZ energy E always lies above the true energy, and shows
reducing the analog of the gluon condensate parameter [7]) in any fitring

procedure which adjusts the SVZ energy to agree with Els'

The variaticnal argument does not extend to £ > 0 (the functien Hl(z)
in eq. (15} is only positive definite Eor L=0), nor deces ir hold for higher-
order approximations to Ry. However, our numerical calculations [11] show
that H[(z) is peaked for z "~ 1, has unit area, and may be approximated for

amooth potentials by a delta function at z v £ + %. With this approximacion,

3
i 3
o2

(1)
Ry

(1) + V([ %)T/mq]llz)_ (22)

A short calculation shows that
(1} n

ST “’i“["eff(”‘" (23

where Veff 15 the classical effective porentlial for angular momentum L = R+ % '

2
Vegglrt) = — 3 + ¥(r) . (24)
mqr



This unexpected result can be understood qualiratively on the basis of a
path-integral argument [11)], and may be regarded as a roughk approximation to
the JWKE energy for a confining potential. It guarantees that the SVZ ener-
gles vary properly with &, the quark mass, and the potential strength, and
suggests that if the potential is adjusted to fit the lowest energiles, all
nearby energles will also be fitted automatically.

More precisely,for confining potentlals which can be fitted locally (that

i8, 1o the region relevant to some finite set of levels) by a power-law potential

Vir) = v_+ Vl(r/a)u; v.»> 0, v > 0, explicit calculation of the integral in

1
eq. {15) and winimization of Rél)(t) gives

v/ (24} N

zﬁ) XV, AW V]]:f“(mqaz)—llz 7S %)] (25)

This result agrees exactly in the dependence on i, 'q’ and Vl with the n=l
JWKB resulc for Enl derived by Quigg and Rosmer {15] for power-law potentlals.
Only the coefficient A(v) iIs fncorrect {11]. The S¥Z fitting procedure in
effect adjusts Vl to compensate for the ertor in A(v) by altering the param-
eters in the glven potential. The result is an accurate simultaneous fit

to all leveis for which the approximate potential is vwalld, with an in-

accurate potencial.

5. Success and failure

We summarize our results and ceonclusions as Eollows:
{1) The usual first-order SVZ method for calculating the lowest 5-
state energy ElS is equivalent to a Raylelgh-Ritz variational calculation,

As a result, the SVI prediction for E 5 is unexpectedly successful even

1

though the method uses only the leading terms in the large Q2 aperator

10

product expansion in the small Q2 regicn in which the expansion converges
very slowly.

{(11) Since the variational prediction for EIS always lies above the true
energy, the potential term in the SVZ formula must always be adjusted down-
ward (e.g., by reducing the analog of the gluon condensate parameter) to
bring the prediction into agreement with the exact results. The changes
necessary may be quite large even when the initial prediction for EIS is
fairly accurate [6,7]. The SVZ method therefore fails as a device to obtain
reliable pocential {or QCD [8,9]) parameters from hadronic masses.

(1i1) For smooth potentials, the SVZ predictions for the ground state
energies E . for different angular momenta R are connected by an approximate
semiclassical relation. This JWEB-like relatfon guarantees that the pre-
dicted energles scale properly with the potential strength and quark mass,
and explains the success of the merhod in Eitting hadronic masses. In
particular, when the potential (ot QCD) parameters are adjusted In the SVZ
procedure to fit the lowest energies, e.g., in charmoenium, the nearby ener-
gles E and the corresponding energies in upsilonjum scale properly and

1L

are predicted accurately even though the parameters are incorrect. We

illustrate this numerically in Table 1 using the reallstic Coulomb-plus-

linear potentfal.

6. Improvements

It is possible te make the SVZ procedure rellable in potential theory
by going {at least) to second order in the operator product expansion (this
will be discussed elsewhere [11]). This is equivalent in the field-theoretic

problem to includlng (at least) all quadratic terms in the condensates im



the expansion, a formidable task, and is complicated by the appearance of

new condensates when high-dimension terms are included.

FOOTNCTES
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1. Specifically, M(g) = 1im ﬁg—%r—— [‘“‘E] T(-Q%).
) d
& LR
qu2=c

The result is completely equivalent to that obtained by applying an

inverse Laplace transform to [, lgnoring the additive constant which

appears in eq. (1) for N=0,
ctie
-1 1 2 UQZ 2
M{o) = L "((o) = Fen dQ” e 1(-Q%)
c~i=

2. We neglect spin and consider only the orbital excitatlcns of the qa

sysCem.
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Table 1. Comparison of the exact ground state energles for the Coulomb-plus
linear potential ¥ = -ar-1+br with the parameters of K.J. Miller
and H.G. Olsson, Phys. Rev. D 25 (1982) 2383, wich the first order
energies calculated by minimizing the SVZ exponential moments func-
tion Rél). The masses of the charm and bottom quark are mc-1.35 GeV,
-b-!..ﬂ GeV. The last two columns give the results obtained when the
potential parameters are modified so that the flrst order 1S and 1P
charmonium energies are correct.

ar0.49, b=0.17 Cev? a=0.665, b=0.146 CeV’
Stace Eu.exact E{i) Error ES) Error
(MeV) (MeV) (MeV) (MeV) (HeV}
Charmonium
15 364 508 +144 364 fitted
1P 172 914 +142 772 ficted
10 1060 1221 +161 1063 +3
LF 1305 1487 +182 1314 +9
Upsilonium
1s ~-98 106 +204 ~-94 +4
LF 349 479 +130 343 -6
1D 585 714 +129 581 -4
1F

769 05 +136 767 -2




